Keratinocyte growth factor (KGF) induces tamoxifen (Tam) resistance in human breast cancer MCF-7 cells.
نویسندگان
چکیده
BACKGROUND Both estrogen receptor-alpha (ER-alpha) and progesterone receptor (PR) are good prognostic factors and indicators of benefit from endocrine therapy in breast cancer patients. The relationship of the ER-alpha and PR status and the difference in clinical benefit from endocrine therapy in breast cancer is currently unclear. It has been suggested that keratinocyte growth factors (KGFs) are important regulatory factors in breast cancer. Our laboratory has demonstrated that KGF can act as an estromedin for the stimulation of breast cancer cell growth. Also, KGF stimulates aromatase activity in primary cultured human breast cells. This enzyme is a key to the conversion of androgens to estrogens. In the present study, ER-alpha, two estrogen-regulated genes, PR and PTPgamma, KGF and their relationship with endocrine resistance in human breast cancer cells were investigated. MATERIALS AND METHODS MCF-7 cells were treated with KGF (1, 5, 10, 20 ng/ml), KGF-13 (0.1, 1, 10 microM) or vehicles as control for 24 hours. KGF-13 is a potential receptor-binding pentapeptide constructed using the KGF peptide residues 101-105 (RTVAV) as a template, located within the beta 4--beta 5 loop. Total RNA were isolated and real-time PCR was employed to identify ER-alpha, PR and PTPgamma gene expressions in response to KGF and KGF-13. Western blot analysis was used to verify the levels of ER-alpha and PR protein, whereas immunohistochemical staining was used to detect PTPgamma expression in MCF-7 cells. To determine the response of MCF-7 cells to endocrine therapy, MCF-7 was treated with either 20 ng/ml KGF or 10 microM KGF-13 combined with 1, 3 and 5 microM of 4-hydroxytamoxifen (4OH-Tam). A non-radioactive cell proliferation assay was applied to determine the growth rate of MCF-7 cells. The results of real-time PCR and the cell proliferation assay were analyzed by Student's t-test and p-values of less than 0.05 were considered statistically significant. RESULTS Our data showed that KGF significantly suppressed ER-alpha, PR and PTPgamma expression in MCF-7 cells. KGF suppressed ER-alpha, PR and PTPgamma mRNA to a maximal inhibition at 20 ng/ml by 88%, 57% and 61%, respectively. Western blot analysis and immunohistochemical staining confirmed the down-regulation of ER-alpha, PR and PTPgamma by KGF in protein levels. Ten microM KGF-13 also decreased ER-alpha expression. Ten microM KGF-13 significantly decreased ER-alpha, PR and PTPgamma mRNA expressions by 51%, 57% and 67%, respectively. These KGF-13-mediated mRNA down-regulations were also observed in protein levels. In a cell proliferation assay, 4OH-Tam (3, 5 microM) induced MCF-7 cell death. KGF and KGF-13 alone did not stimulate MCF-7 cell growth. KGF significantly disrupted 4OH-Tam cell killing effects by 1.2- and 1.3-fold at 4OH-Tam concentrations of 3 microM and 5 microM, respectively. KGF-13 significantly disrupted 4OH-Tam cell killing effects by 1.2- and 1.7-fold at 4OH-Tam concentrations of 3 microM and 5 microM, respectively. CONCLUSION Our results suggested that not only ER-alpha and PR but also PTPgamma could be potential bio-makers for growth factor-induced endocrine resistant in breast cancer. KGF might increase the endocrine resistance via decreasing ER-alpha, PR and PTPgamma as well. Moreover, the functional analysis of KGF-13 implied possible applications of using short receptor-binding peptides derived from intact KGF as breast cancer therapeutic agents. Thus, our experimental data provided evidence of KGF-induced anti-hormone resistance in human breast cancer and suggested novel strategies for breast cancer via interference with KGF signaling.
منابع مشابه
Silencing of Keratinocyte Growth Factor Receptor Restores 5-Fluorouracil and Tamoxifen Efficacy on Responsive Cancer Cells
BACKGROUND Keratinocyte growth factor receptor (KGFR) is a splice variant of the FGFR2 gene expressed in epithelial cells. Activation of KGFR is a key factor in the regulation of physiological processes in epithelial cells such as proliferation, differentiation and wound healing. Alterations of KGFR signaling have been linked to the pathogenesis of different epithelial tumors. It has been also ...
متن کاملP-195: Thymoquinone Increases Efficacy of Tamoxifen Induced Apoptosis in Human Breast Cancer MCF-7 Cells: In Vitro
Background: The objective of this study is to evaluate combined effect of Thymoquinone (The main active component of black seeds) with Tamoxifen drug on apoptosis of human breast cancer MCF-7 cells (Noninvasive human breast cancer cell line, estrogen receptor positive). Materials and Methods: The human breast cancer MCF- 7 cells were treated with Tamoxifen (2 μM) alone or in combination with Th...
متن کاملDecreased chicken ovalbumin upstream promoter transcription factor II expression in tamoxifen-resistant breast cancer cells.
Tamoxifen (TAM) is successfully used for the treatment and prevention of breast cancer. However, many patients that are initially TAM responsive develop tumors that are antiestrogen/TAM resistant (TAM-R). The mechanism behind TAM resistance in estrogen receptor alpha (ERalpha)-positive tumors is not understood. The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor...
متن کاملEffects of Polyamines on TNFalpha- or Tamoxifen-induced Apoptosis in Human Breast Cancer Cells.
PURPOSE To investigate the effects of polyamines on tumor necrosis factor alpha (TNFalpha)-or tamoxifen (TAM)-induced apoptosis in estrogen receptor (ER)-positive MCF- 7 and ER-negative MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS Cell viability was assessed by using MTT assay. Reactive oxygen species (ROS) generation was measured using 2', 7'-dichlorofluorescin diacetste (DCFD...
متن کاملRole of PKC-ERK signaling in tamoxifen-induced apoptosis and tamoxifen resistance in human breast cancer cells.
This study was designed to investigate the role of protein kinase C (PKC) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in tamoxifen (TAM)-induced apoptosis and drug resistance in human breast cancer cells. Drug-sensitive, or estrogen receptor (ER)-positive human breast carcinoma cells (MCF-7) and the multi-drug-resistant variant (ER-negative) MCF-7/ADR cells were treated wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anticancer research
دوره 26 3A شماره
صفحات -
تاریخ انتشار 2006